

UWEE Summer School Program

June 25 – August 6, 2017 University of Washington Seattle, Washington, USA

Jenq-Neng Hwang (黃正能) Professor & Associate Chair for Global Affairs hwang@uw.edu 1111111111

Where is Seattle?

A Fast Growing High-Tech City

Seattle and the Pacific Northwest

- Mild weather within the Puget Sound area
- Abundant water (rainfall)
- Lush, verdant setting
- Comparatively low crime rates

- High regard for academics and scholarship
- Easy and diverse opportunities for a healthy lifestyle:
 - Skiing
 - Hiking
 - Boating
 - Cultural arts and events

University of Washington

- Student body: 40K+ @ Seattle campus (1/3 grad)
- Annual budget: ~\$3B USD (\$1.3B on research grants)
- 11th Global University Ranking (U.S. News, 2015)
- 15th in the World Academic Ranking (SJTU, 2015)
- 4th World's Most Innovative Univ. (Reuters, 2015)
- 1st ranked Medical School (primary care schools)
- -2^{nd} in biomedical engineering funding from NIH
- -6+1 Nobel prize winners since 1989
- 42/16 National Academy of Science/Engr members
- 3 National Medal of Science recipients

A Beautiful Campus @ Seattle WA

Electrical Engr. Department

- Founded in 1905
- New EE Building in 1997
- Degrees offered:
 - Bachelor of Science in Electrical Engineering (BSEE)
 - Master of Science in Electrical Engineering (MSEE)
 - Doctor of Philosophy in Electrical Engineering (Ph.D.)
- Rankings 2015:
 - The Chronicle of Higher Education: 8th
 - US News and World Report: 18th (graduate)
 - US News and World Report: 18th (undergraduate)

Our Faculty

- 41 Tenure-Track + 10 Research + 24 Adjunct + ~60 Affiliate Faculty
- 27 IEEE Fellows + 2 NAE Fellows
- Many Young Investigator Awards:
 - PECASE, NSF PYI, NSF Career, ONR YIP, AFOSR YIP, ARO YIP, NIH Career, IEEE EMBS Early Career
- Several MIT Technology Review Awards
- Significant professional services, leadership, and industrial consultant roles

Our Research Strengths

- Communications and Networking: wireless networking systems, secure networks and protocols, wireless multimedia
- Electromagnetics and Remote Sensing: microwave/millimeter-wave remote sensing, antenna design/modeling, computational electromagnetics
- Integrated Systems, Circuits, VLSI: low power circuits, wireless sensors, mixed signal circuits
- Nanotechnology, MEMS, Photonics: nanoelectronic/photonic devices, biological and molecular systems and models
- **Power and Energy:** modeling of heterogeneous energy systems, operating/planning of energy systems
- Speech, Image, and Video Processing: multimedia data analyses, data mining and machine learning, speech and language processing
- Systems, Controls & Robotics: bio-robotics, human-brain interfaces

Summer Program Overview

- Customized program for international Electrical Engineering and Computer Engineering students
- Two engineering courses, 24 hours/week (lecture and lab)
- American academic culture course, 2 hours/week (lectures and experiences)
- Visits to Seattle area businesses relevant to program curriculum (3-4 companies: Microsoft, Boeing, Tableau, Voicebox, T-Mobile, etc)
- Student immigration support (I-20s, F-1 student visas)
- Ground transportation to/from SeaTac Airport
- UW student experience: student housing, campus life

Weekly Course Schedule

	Monday	Tuesday	Wednesday	Thursday	Friday
8:30 - 9:20	EE233 American Academic Culture	EE299	EE233	EE299	EE233
9:30 - 10:20					
10:30 - 11:20			American Academic Culture		
Lunch Break					
13:30 - 14:20	Lab or Quiz (EE233)	Lab or Quiz (EE299)	Lab or Quiz (EE233)	Lab or Quiz (EE299)	Visit or Activities
14:230 – 15:20					
15:30 - 16:20					

EE233 CIRCUIT THEORY

- **Goals:** To learn how to analyze electric circuits in the frequency domain; to calculate power for electric circuits; to recognize and analyze common filters such as low-pass, high-pass, band-pass, and band-reject both for passive and active circuits; to learn how to use laboratory instruments such as the function generator, oscilloscope and multimeter for analyzing electric circuits that you build in the laboratory; to learn how to use MultiSim; to learn how to write a lab report on your experiments; to prepare students for more advanced courses in circuit analysis and design.
- Prerequisites by Topic:
 - DC circuit analysis
 - Transient analysis of electric circuits in the time domain
 - Solution of first and second order linear differential equations
 - Manipulation of complex numbers
- Topics:
 - Sinusoidal sources and responses, Phasors, network theorems
 - Average and Reactive power, complex power, power factor
 - Laplace transformation techniques
 - Circuit analysis with Laplace Transforms, transfer functions
 - Passive filters
 - Active filters
 - Basic EE laboratory, components, instrumentation and simulation
- **Course Structure:** Lecture (6 hours / week), Laboratory & Quiz (5+1 hours / week), weekly HWs
- Grading: 20% Homework, 20% Laboratories, 10% Lab Test & Quizzes, 20% Midterms, 30% Final

EE299 INTRODUCTION TO C AND MICROPROCESSORS

- This hands-on class that introduces the ANSI C language and microprocessors. Through in-class exercises, homework, and a series of practical lab projects, students are encouraged to develop and practice good software design methodologies using the C language then apply these skills towards developing, debugging, and testing embedded applications for an Arduino microprocessor.
- **Goals:** to learn, to work with, and to develop applications of modest complexity in the C language for an Arduino microprocessor.
- Topics:
 - Introduction -- A Brief Look Inside the Computer, Introduction to C, Programs, and Program Design
 - The Microprocessor -- Basic Architecture, Hardware and Software, Input and Output
 - Identifiers C Data Types Variables and Numbers
 - Basic Electronics -- Introducing Electricity, Fundamental Items and Terminology
 - Program Structure
 - Characters and Strings
 - Operators
 - Control and Control Flow
 - Pointers
 - Basic Data Structures Containers
 - Bringing Your Program Together
- Course Structure: Lecture (6 hours / week), Laboratory & Quiz (5+1 hours / week), weekly HWs
- Grading: 20% Homework, 20% Laboratories, 10% Lab Test & Quizzes, 20% Midterms, 30% Final

Snapshots

Visiting Microsoft Research

Classes and Labs

Social Activities

Students Evaluations (2015)

Summer Program Cost Overview

- Program Tuition
 - Program: \$5,500 per student (minimum 37 students)
- Travel Costs
 - Separate from program tuition
 - Your school book/purchase flights
 - All students on one flight to/from Seattle
 - Ground transportation to/from SeaTac provided by UW
- Housing & Meal Costs
 - Separate from program costs
 - UW dormitory housing (North Campus)
 - Double occupancy (shared rooms); singe occupancy (very limited)
 - Student flexible dining options: debit cards for campus food venues
- Total estimated cost per student \$9,800
 - Program \$5,500; travel ~\$1,000; housing ~\$2,460 (*single*); meals ~\$820

Hope to see you in Seattle!

